1.         Zhang, J., et al., Unveiling Active Sites for the Hydrogen Evolution Reaction on Monolayer MoS2. Advanced Materials, 2017.

2.         Zhang, C., et al., MoS2 Decorated Carbon Nanofibers as Efficient and Durable Electrocatalyst for Hydrogen Evolution Reaction. C, 2017. 3(4): p. 33.

3.         Zequine, C., et al., High-Performance Flexible Supercapacitors obtained via Recycled Jute: Bio-Waste to Energy Storage Approach. Scientific Reports, 2017. 7.

4.         Yamaguchi, H., et al., Active bialkali photocathodes on free-standing graphene substrates. arXiv preprint arXiv:1703.00921, 2017.

5.         Wang, Y., et al., Solution‐Processed MoS2/Organolead Trihalide Perovskite Photodetectors. Advanced Materials, 2017. 29(4).

6.         Tsai, H., et al., Effect of Precursor Solution Aging on the Crystallinity and Photovoltaic Performance of Perovskite Solar Cells. Advanced Energy Materials, 2017.

7.         Liu, F., et al., Single layer graphene protective gas barrier for copper photocathodes. Applied Physics Letters, 2017. 110(4): p. 041607.

8.         Keyshar, K., et al., Experimental Determination of the Ionization Energies of MoSe2, WS2, and MoS2 on SiO2 Using Photoemission Electron Microscopy. ACS nano, 2017. 11(8): p. 8223-8230.

9.         Berg, M., et al., Layer dependence of the electronic band alignment of few-layer Mo S 2 on Si O 2 measured using photoemission electron microscopy. Physical Review B, 2017. 95(23): p. 235406.

2013 - 2003

1.       Gupta, G., et al., Stable and fluid multilayer phospholipid–silica thin films: mimicking active multi-lamellar biological assemblies. ACS nano, 2013. 7(6): p. 5300-5307.

2.       Gupta, G., et al., Morphology and porosity of nanoporous Au thin films formed by dealloying of AuxSi1− x. Journal of Applied Physics, 2012. 112(9): p. 094320.

3.       Gupta, G., et al., Direct electron transfer catalyzed by bilirubin oxidase for air breathing gas-diffusion electrodes. Electrochemistry Communications, 2011. 13(3): p. 247-249.

4.       Gupta, G., et al., Direct bio-electrocatalysis by multi-copper oxidases: Gas-diffusion laccase-catalyzed cathodes for biofuel cells. Electrochimica Acta, 2011. 56(28): p. 10767-10771.

5.       Gupta, G. and P. Atanassov, Electrochemical DNA Hybridization Assay: Enzyme‐Labeled Detection of Mutation in p53 Gene. Electroanalysis, 2011. 23(7): p. 1615-1622.

6.       Duque, J.G., et al., Fluorescent single-walled carbon nanotube aerogels in surfactant-free environments. ACS nano, 2011. 5(8): p. 6686-6694.

7.       Duque, J.G., et al., New route to fluorescent single-walled carbon nanotube/silica nanocomposites: balancing fluorescence intensity and environmental sensitivity. The Journal of Physical Chemistry C, 2011. 115(31): p. 15147-15153.

8.       Luckarift, H.R., et al., Standardized microbial fuel cell anodes of silica-immobilized Shewanella oneidensis. Chemical Communications, 2010. 46(33): p. 6048-6050.

9.       Hamilton, C.E., et al., Carbon nanomaterials in silica aerogel matrices. MRS Online Proceedings Library Archive, 2010. 1258.

10.       Gupta, G., et al., Stable and Responsive Fluorescent Carbon Nanotube Silica Gels. MRS Online Proceedings Library Archive, 2010. 1258.

11.       Gupta, G., et al., CVD for the facile synthesis of hybrid nanobiomaterials integrating functional supramolecular assemblies. Langmuir, 2009. 25(23): p. 13322-13327.

12.       Gupta, G., P. Atanassov, and G.P. López, Robust hybrid thin films that incorporate lamellar phospholipid bilayer assemblies and transmembrane proteins. Biointerphases, 2006. 1(1): p. 6-10.

13.       Gupta, G., V. Rajendran, and P. Atanassov, Bioelectrocatalysis of oxygen reduction reaction by laccase on gold electrodes. Electroanalysis, 2004. 16(13‐14): p. 1182-1185.

14.       Gupta, G., V. Rajendran, and P. Atanassov, Laccase Biosensor on Monolayer‐Modified Gold Electrode. Electroanalysis, 2003. 15(20): p. 1577-1583.



1.          Yamaguchi, H., et al., Valence‐band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics. physica status solidi (a), 2016. 213(9): p. 2380-2386.

2.         Voiry, D., et al., The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nature materials, 2016. 15(9): p. 1003-1009.

3.         Villarrubia, C.W.N., et al., Self-feeding paper based biofuel cell/self-powered hybrid μ-supercapacitor integrated system. Biosensors and Bioelectronics, 2016. 86: p. 459-465.

4.         Tsai, H., et al., High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 2016. 536(7616): p. 312-316.

5.         Singh, A.K., et al., Millimeter-scale gate-tunable graphene nanoribbon devices as a platform for mid-infrared and bio sensing applications. Applied Materials Today, 2016. 4: p. 40-44.

6.         Rolston, N., et al., Mechanical integrity of solution-processed perovskite solar cells. Extreme Mechanics Letters, 2016. 9: p. 353-358.

7.         Nie, W., et al., Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nature communications, 2016. 7.

8.         Neukirch, A.J., et al., Polaron stabilization by cooperative lattice distortion and cation rotations in hybrid perovskite materials. Nano letters, 2016. 16(6): p. 3809-3816.

9.       Martinez, U., et al., Critical role of intercalated water for electrocatalytically active nitrogen-doped graphitic systems. Science advances, 2016. 2(3): p. e1501178.

10.       Man, M.K., et al., Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffer. Scientific reports, 2016. 6: p. 20890.

11.       Mallajosyula, A.T., et al., Critical Role of the Sorting Polymer in Carbon Nanotube-Based Minority Carrier Devices. ACS nano, 2016. 10(12): p. 10808-10815.

12.       Mallajosyula, A.T., et al., Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment. Applied Materials Today, 2016. 3: p. 96-102.

13.       Lin, Y.-H., et al., Supramolecular block copolymer photovoltaics through ureido-pyrimidinone hydrogen bonding interactions. RSC Advances, 2016. 6(57): p. 51562-51568.

14.       Lin, Y.-C., et al., Charge transfer in crystalline germanium/monolayer MoS 2 heterostructures prepared by chemical vapor deposition. Nanoscale, 2016. 8(44): p. 18675-18681.

15.       Lawrence, D.W., et al., High-energy density nanofiber-based solid-state supercapacitors. Journal of Materials Chemistry A, 2016. 4(1): p. 160-166.

16.       Cummins, D.R., et al., Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nature communications, 2016. 7.

17.       Cattaneo, A., et al. Performance assessment of a remotely readable graphite oxide (GO) based tamper-evident seal. in SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. 2016. International Society for Optics and Photonics.

18.       Blancon, J.C., et al., The Effects of Electronic Impurities and Electron–Hole Recombination Dynamics on Large‐Grain Organic–Inorganic Perovskite Photovoltaic Efficiencies. Advanced Functional Materials, 2016. 26(24): p. 4283-4292.


1.         Yamaguchi, H., et al., Spatially resolved photoexcited charge-carrier dynamics in phase-engineered monolayer MoS2. Acs Nano, 2015. 9(1): p. 840-849.

2.         Yalcin, S.E., et al., Direct imaging of charge transport in progressively reduced graphene oxide using electrostatic force microscopy. ACS nano, 2015. 9(3): p. 2981-2988.

3.         Tsai, H., et al., Optimizing composition and morphology for large-grain perovskite solar cells via chemical control. Chemistry of Materials, 2015. 27(16): p. 5570-5576.

4.         Nie, W., et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015. 347(6221): p. 522-525.

5.         Nie, W., et al., Interface Design Principles for High‐Performance Organic Semiconductor Devices. Advanced science, 2015. 2(6).

6.         MARCHI, A., et al., A Remotely Readable, Self-authenticating Tamper Evident Seal Based on Graphene-based Materials and Compressive Sensing. Structural Health Monitoring 2015, 2015.

7.         Lau, C., et al., Paper based biofuel cells: Incorporating enzymatic cascades for ethanol and methanol oxidation. International Journal of Hydrogen Energy, 2015. 40(42): p. 14661-14666.

8.         Gupta, G., et al., Fluid and resistive tethered lipid membranes on nanoporous substrates. The Journal of Physical Chemistry B, 2015. 119(40): p. 12868-12876.

9.         Gao, Y., et al., Plasmonics: Hybrid Graphene–Giant Nanocrystal Quantum Dot Assemblies with Highly Efficient Biexciton Emission (Advanced Optical Materials 1/2015). Advanced Optical Materials, 2015. 3(1): p. 2-2.

10.       Gao, Y., et al., Hybrid Graphene–Giant Nanocrystal Quantum Dot Assemblies with Highly Efficient Biexciton Emission. Advanced Optical Materials, 2015. 3(1): p. 39-43.

11.       Cummins, D.R., et al., Catalytic Activity in Lithium-Treated Core–Shell MoO x/MoS2 Nanowires. The Journal of Physical Chemistry C, 2015. 119(40): p. 22908-22914.

12.       Cattaneo, A., et al., A graphite oxide (GO)-based remote readable tamper evident seal. Smart Materials and Structures, 2015. 24(10): p. 105014.

13.       Cattaneo, A., et al. A remote-readable graphite oxide (GO) based tamper-evident seal with self-reporting and self-authentication capabilities. in Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2015. 2015. International Society for Optics and Photonics.

14.       Branch, B., et al., Micropillar Electrode Array: From Metal to Dielectric Interface. IEEE Sensors Journal, 2015. 15(9): p. 4992-5000.

15.       Bossert, J.A., et al., Prototyping and Testing of a Graphene-Oxide Tamper Evident Seal, in Structural Health Monitoring and Damage Detection, Volume 7. 2015, Springer, Cham. p. 37-45.

16.       Bilgin, I., et al., Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality. 2015.


1.       Yen, H.-J., et al., Flexible memory devices with tunable electrical bistability via controlled energetics in donor–donor and donor–acceptor conjugated polymers. Journal of Materials Chemistry C, 2014. 2(22): p. 4374-4378.

2.       Yamaguchi, H., et al., Reduced graphene oxide thin films as ultrabarriers for organic electronics. Advanced Energy Materials, 2014. 4(4).

3.       Villarrubia, C.W.N., et al., Practical electricity generation from a paper based biofuel cell powered by glucose in ubiquitous liquids. Electrochemistry Communications, 2014. 45: p. 44-47.

4.       Sharp, N., et al. An asynchronous sensor skin for structural health monitoring applications. in SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. 2014. International Society for Optics and Photonics.

5.       Sharp, N., et al., Crack detection sensor layout and bus configuration analysis. Smart Materials and Structures, 2014. 23(5): p. 055021.

6.       Nie, W., et al., Interface design principles for high efficiency organic semiconductor devices. Manuscript under review, 2014.

7.       Moody, N., et al. Graphene shield-enhancement of photosensitive surfaces and devices. in SPIE Defense+ Security. 2014. International Society for Optics and Photonics.

8.       Martinez, U., et al., Thin-Film Non-Precious Metal Model Catalysts for Oxygen Reduction Reaction. ECS Transactions, 2014. 64(3): p. 293-301.

9.        Lei, S., et al., Ternary CuIn7Se11: Towards Ultra‐Thin Layered Photodetectors and Photovoltaic Devices. Advanced Materials, 2014. 26(45): p. 7666-7672.

10.      Lei, S., et al., Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS nano, 2014. 8(2): p. 1263-1272.

11.      Kuo, C.-Y., et al., Structural design of benzo [1, 2-b: 4, 5-b′] dithiophene-based 2D conjugated polymers with bithienyl and terthienyl substituents toward photovoltaic applications. Macromolecules, 2014. 47(3): p. 1008-1020.

12.      Kuntz, A., et al., Endowing Structures with a Nociceptive Sense Enabled by a Graphene-Oxide Sensing Skin, in Structural Health Monitoring, Volume 5. 2014, Springer, Cham. p. 117-123.

13.      Kappera, R., et al., Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2. Apl Materials, 2014. 2(9): p. 092516.

14.      Kappera, R., et al., Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nature materials, 2014. 13(12): p. 1128-1134.

15.      Han, W., et al., Handbook of Nanomaterials Properties: Siliceous Nanobiomaterials, in Handbook of Nanomaterials Properties. 2014, Springer Berlin Heidelberg. p. 963-993.

16.      Branch, B., et al., 3D capacitive sensor array for detection of neural responses. ECS Journal of Solid State Science and Technology, 2014. 3(2): p. N15-N21.